
Abstract. Results in the coupling of chiral molecules are
reviewed from elementary points of view and some new
results are given. We show that interactions between
chiral molecules can be treated by using molecular
quantum electrodynamics in electric and magnetic dipole
approximation in ways di�erent from standard dia-
grammatic perturbation theory. The interactions are the
dispersive coupling of ground-state chiral molecules and
excitation transfer, with emphasis on chiral discrimina-
tion. For ground-state molecules the coupling is dealt
with ®rst by calculating the coupling, at all separation
distances, of electric and magnetic dipoles induced in the
two molecules by ¯uctuations in the vacuum radiation
®eld. The second method is the response by one chiral
molecule to the ®eld generated by the other. Excitation
transfer is treated as the response by the accepting
ground-state molecule to the dipole ®eld of the donor. A
novel variant in ®nding the rate of excitation transfer is
by using Poynting's theorem.

Key words: Chiral discrimination ± Excitation exchange
± Dispersive coupling

1 Introduction

There is a long history of experimental demonstration of
chiral discrimination, beginning with Pasteur [1] show-
ing in 1858 that in attacking ammonium tartrate the
mould penicillium discriminates in its rate of attack on
dextro and laevo forms of the salt. He also showed that
the two enantiomers of asparagine excite di�erent
physiological responses, having di�erent ¯avours. How-
ever, then and for many years after, the systems that

were studied were too complex to treat theoretically.
Dwyer and Gyarfas [2] worked with smaller chiral
systems, showing, for example, that the thermodynamic
activities of the dextro and laevo forms of the ruthenium
ion of tris-orthophenanthroline were di�erent from one
another in the presence of potassium D-tartrate. This
work stimulated studies of model systems to represent
the e�ects between real molecules and ions, both achiral
and chiral. The experimental results and some theoret-
ical discussions are summarized by Craig and Mellor [3].

For close approach it has been realized for a long
time that the packing of molecules and ions in crystals is
dominated by surface form, and can be understood in an
approximate way by supposing the molecules to be
bounded by hard surfaces. The energetics were modelled
in calculations of intramolecular discriminations in op-
tically active and meso forms of 2,3-cyanobutane [4].
Beyond contact distances it was generally supposed that
electrostatic forces and dispersion forces become im-
portant, each with characteristic dependences on dis-
tance and orientation. At intermediate and longer
distances, the main topic of this paper, there is a tran-
sition from electrostatic to electromagnetic interactions,
with the central feature being that at long range the in-
¯uences between molecules are mediated by the radia-
tion ®eld, propagated at the speed of light.

The motivation for what follows is to describe ele-
mentary physical pictures of interactions. We shall then
extend recent results, particularly for the interaction of
chiral systems beyond contact distance, both in disper-
sion interactions and excitation transfer, in which an
electronically excited molecule transfers energy to an-
other by photon exchange.

Early theories of coupling between molecules applied
to separation distances R up to a few tens of molecular
diameters. The idea was that charge ¯uctuations in one
molecule acted on the other through the dipolar ®eld:
dipole moments were induced in the second molecule.
The induced and inducing dipoles gave the characteristic
R)6 interaction energy dependence, and the dipole-
dipole angle dependence. In London's 1930 quantum
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mechanical version the coupling of virtual dipole tran-
sition moments replaced charge ¯uctuations in the
classical sense, but the essential physics was the same.
The extension to large R was ®rst made by Casimir, and
will be described in Sect. 1.1. He showed that at long
distances the ¯uctuating dipoles had their e�ect through
their radiation ®elds, with a characteristic R)7 energy
law. The quantum electrodynamical theory that has
since developed, applicable to all distances, includes the
radiation ®eld in the dynamics. It is interesting that the
notion of ¯uctuations, but now of the electromagnetic
®eld, has reappeared (Sect. 1.2) in a viewpoint that gives
a clear physical picture.

As is well known [5] the discussion of interactions
in terms of quantum electrodynamics depends on the
treatment of molecules coupled to the quantized radia-
tion ®eld, with the Hamiltonian,

H � Hmol � Hrad � Hint ; �1:1�
where the terms on the right refer to Hamiltonians for
the free molecules, the free radiation ®eld, and the
molecule-®eld coupling. An essential feature of quantum
electrodynamics is the quantization of the electromag-
netic ®eld. The ®eld is subject to quantum conditions
within a box. The allowed ®eld modes are quantized
according to the rules for the harmonic oscillator. The
associated particles are photons, which play a key role in
molecule-molecule coupling. In the multipolar form of
quantum electrodynamics the leading terms that des-
cribe the coupling of the molecules to the electromag-
netic ®eld are

Hint � ÿeÿ10 l�A� � d�RA� ÿ eÿ10 l�B� � d�RB�
ÿm�A� � b�RA� ÿm�B� � b�RB� ; �1:2�

where l and m are the electric and magnetic dipole
moments, d and b the electric displacement ®eld and the
magnetic ®eld, and e0 the vacuum permittivity. With this
form of Hint, interactions at all distances are solely
mediated by the radiation ®eld by exchange of photons.
A useful distinction is between instantaneous and
retarded interactions, with a progressive change as the
distance increases through and beyond the reduced
wavelength for a characteristic molecular transition.

Rates of energy transfer and energy shifts are usually
calculated with standard perturbation theory together
with diagrammatic techniques. For example, excitation
transfer between molecules may be viewed as one-
photon exchange, the amplitude being found using
second-order perturbation theory. Dispersion interac-
tions arise from two-photon exchange, and standard
fourth-order perturbation theory gives the dispersion
energies. The aim of the present paper is to deal with
these problems by methods that have familiar classical
analogues.

We ®rst sketch two physical pictures that give good
physical insight. They depend on the quantum properties
of the vacuum state of the radiation ®eld. The vacuum
state is the state with all modes in their ground states. It
has the important property that the average value of the
®eld is zero though the square of the ®eld is not; that is,

the ®eld ¯uctuates about a mean value of zero and has a
zero-point energy 1=2� �P �hx, summed over the allowed
frequencies x. Though this is in®nite the changes in the
presence of molecules are ®nite and can be related to
intermolecular interactions.

1.1 Molecular interaction energy as a perturbation
of the electromagnetic vacuum

The physical pictures to be described are both connected
to aspects of the quantized ®eld. In the ®rst, Casimir [6]
developed the idea that a polarizable atom or molecule
placed in a box would change the electromagnetic zero-
point energy. The energy change caused by two such
bodies separated by distance R could be visualized as the
source of the intermolecular potential.

Following Casimir, the fractional change in fre-
quency x by a body at (x1, y1, z1) of polarizability a1 in
a mode with electric ®eld E0�x; y; z) sinxt is given by

dx
x
� ÿ 2pa1E2

0 x1; y1; z1� �R R R
E2
0 dx dy dz

; �1:3�

with integration over the volume of the box. A second
body, polarizability a2, further modi®es the mode
frequencies through the action of the electric ®eld
�E0 � E1)sinxt, where E1 is the ®eld of the ®rst body
assumed to be propagated to the position of the second
as if the ®rst were a classical radiating Hertzian dipole.
Casimir extracted the expression (Eq. 1.4) for the long-
range energy of attraction, for limiting large values of R,

DE � ÿ 23�hc
64p3e20

a1a2
R7

�1:4�

in terms of the static polarizabilities. The expression is
the limiting case of the complete results found before
by Casimir and Polder [7].

Power [8] made the calculation by treating the energy
shift as a perturbation on the vacuum state by the cou-
pling ÿ�1=2�aE2, without explicit reference to the mode
structure of the electromagnetic ®eld. He extended Ca-
simir's result to systems with axial symmetry. In a later
paper Power and Thirunamachandran [9], again using
the di�erence in the zero-point energy sums over the
modes of the cavity caused by introducing polarizable
bodies, broadened the results to N bodies at any distance
beyond contact in any relative orientation, thus gener-
alizing to include all cases of interacting neutral bodies
in their ground states.

This picture connecting intermolecular interaction
energy with energy change in the electromagnetic vacu-
um is thus of general application and is found to be
valuable for visualizing physical situations.

1.2 Molecular interactions connected to ¯uctuations
of the vacuum electromagnetic ®eld

The second viewpoint is based on another property of
the vacuum state of the electromagnetic ®eld. In a
stationary energy state exact values cannot be assigned
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to variables which do not commute with the Hamilto-
nian. The electric and magnetic ®eld variables e and b
do not commute with each other or with the energy. In
the vacuum state we have [5] for a mode of frequency ck
the expectation values for e and e2,

0 ej j0h i � 0; 0 e2
�� ��0
 � � �hck

2e0V
; �1:5�

where V is the quantization volume. Thus, in every mode
in the vacuum state the expectation value of the electric
®eld, and likewise the magnetic ®eld, is zero, but
according to the second expression in Eq. (1.5) there
are ¯uctuations and the ®elds are not identically zero. In
one version of this model [10] the electric ®eld ¯uctua-
tions induce a dipole moment l � ae in a polarizable
body. The instantaneous moment induces a moment in
the other; the coupling between the two is attractive. At
short range we get the van der Waals attraction going as
Rÿ6, corresponding to the R)3 dipole-dipole coupling in
second order. At longer distances the ®nite propagation
time of the ®elds gives a retardation in the response of
the second molecule to the ®eld of the ®rst and in the
limit the attraction becomes the Casimir±Polder energy
(Eq. 1.4).

A second route along these lines to the Casimir±
Polder potential [11] is to suppose that dipole moments
are induced in both of the coupled systems by ¯uctua-
tions in the displacement ®eld in the same mode. The
interaction is then between systems in resonance treated
according to the potential [12] given in Eq. (1.6), at
separation R,

Vij k;R� � � 1

4pe0R3
dij ÿ 3R̂iR̂j
ÿ �

cos kR� kR sin kR� ��
ÿ dij ÿ R̂iR̂j
ÿ �

k2R2 cos kR
�
; �1:6�

where k � x=c is the wave number. The method is
closely related to Casimir's described following
Eq. (1.3).

The plan of the rest of the paper is as follows. In
Sect. 2, the induced electric-dipole method is reviewed
for the cases where the inducing ®eld is (1) a static
electric ®eld, (2) an incident radiation ®eld, and (3) the
vacuum radiation ®eld, recovering the familiar results.
In Sect. 3, the method is extended to chiral systems, in
which both electric and magnetic dipole moments can
be induced by the electromagnetic vacuum, and in
which a discrimination exists between left-handed/right-
handed and left-handed/left-handed interactions be-
tween them. The calculation of the dispersion energy by
the response method is described in Sect. 4. The method
is applied in Sect. 5 to calculate the discriminatory rate
of excitation transfer between an excited chiral molecule
and a chiral molecule in its ground state. In Sect. 6, the
rate is calculated in a novel manner using the Poynting
vector.

In later sections we extend this method to chiral
systems, in which both electric and magnetic dipole
moments can be induced by the electromagnetic vacuum
®eld, and in which a discrimination exists between left-
handed/right-handed and left-handed/left-handed inter-
actions.

2 The induced-dipole method in simple cases

2.1 For static and incident radiation ®elds

Two identical polarizable bodies A and B, atoms or
molecules, in a static external electric ®eld E, each
possess induced electric moments given by Eq. (2.1),

lind
i � aij 0� �Ej ; �2:1�

where aij�0� is the static electric dipole polarizability.
The coupling energy of the moments for all separations
R is the dipole-dipole energy found from the potential
energy tensor Eq. (2.2),

Vij R� � � 1

4pe0R3
dij ÿ 3R̂iR̂j
ÿ � �2:2�

and is given by

DE � lind
i A� �lind

j B� �V ij R� �

� 1

4pe0R3
aik 0;A� �ajl 0;B� � dij ÿ 3R̂iR̂j

ÿ �
EkEl : �2:3�

A novel extension of this method is to calculate the
interaction in the presence of a radiation ®eld. A
further extension leads to the calculation of the
discriminating dispersion energy for coupled chiral
molecules. The application is straightforward. For a
monochromatic ®eld of frequency x the induced
moment is

lind
i � eÿ10 aij x� �dj x� � ; �2:4�

where, for later applications, we have introduced the
electric displacement ®eld d. The frequency-dependent
polarizability is given in Eq. (2.5),

aij x� � �
X

m

l0m
i lm0

j

Em0 ÿ �hx
� l0m

j lm0
i

Em0 � �hx

 !
: �2:5�

The interaction between A and B now depends on the
retarded potential tensor Eq. (1.6); it is given in
Eq. (2.6),

DE � lind
i A� �lind

j B� �Vij k;R� �
� eÿ20 aik k;A� �aje k;B� �
� dk k;RA� �dl k;RB� �h i Vij k;RB ÿ RA� � : �2:6�

The factor inside the angle brackets in Eq. (2.6) is the
correlation factor between displacement ®elds at RA

and RB in mode k. It is easily found for the n photon
state of the incident ®eld and is related to the incident
®eld intensity. Using the mode expansion of d in
Eq. (2.7),

d r� � � i
X
k;k

�hcke0
2V

� �1=2

e k� � k� �a k� � k� � exp ik:r� �
h

ÿ�e k� � k� �a� k� � k� � exp ÿik:r� �
i

�2:7�
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we have

n
X

k

di k; k;RA� �dj k; k;RB� �
�����

�����n
* +
� 2n� 1� � �hcke0

2V
�
X

k

ei k� ��ej k� � exp ÿik: RB ÿ RA� �� � ; �2:8�

in which k is the wave vector and k is the polarization
index. For an external ®eld of n quanta in this mode
acting on a pair of molecules in a ®xed orientation, we
®nd after summing over polarizations,

DE k� � � 2n� 1� � �hck
2e0V

� �
aik k;A� �ajl

� k;B� �Vij k;RB ÿ RA� �
� dij ÿ k̂ik̂j

� �
exp�ÿik: RB ÿ RA� �� : �2:9�

After calculating the e�ect of tumbling of the molecule
pair, and expressing the energy shift in terms of the
irradiance I of the incident ®eld, we ®nd

DE � I
8pe20c

a�k;A�a k;B� �
R3

�
kR sin 2kR� 2 cos 2kR

ÿ 5 sin 2kR
kR

ÿ 6 cos 2kR
k2R2

� 3 sin 2kR
k3R3

�
�2:10�

in agreement with the result [13] from conventional
fourth-order perturbation theory with the ®rst two
terms of the interaction Hamiltonian Eq. (1.2) as
perturbation.

2.2 Energy shift for the vacuum ®eld

To introduce the method given in later sections for chiral
molecules we illustrate the use of the result Eq. (2.8) to
obtain the Casimir±Polder potential. The ®eld correla-
tion factor does not vanish for the vacuum ®eld. For
n � 0 Eq. (2.8) gives the result,

0 di k;RA� � dj k;RB� ��� ��0
 �
� �hcke0

2V
exp �ik:R� dij ÿ k̂ik̂j

� �
: �2:11�

The total energy shift is the sum of Eq. (2.9) over all
modes, DE �Pk DE k� �. Converting the k sum to an
integral,X

k

. . .� � �
Z

. . .� � k
2dk dX V

2p� �3 �2:12�

and using

1

4p

Z
dij ÿ k̂ik̂j

� �
exp ik:R� � dX

� dij ÿ R̂iR̂j
ÿ � sin kR

kR

� dij ÿ 3R̂iR̂j
ÿ � cos kR

k2R2
ÿ sin kR

k3R3

� �
�2:13�

the shift may be shown [11] to be

DE � ÿ �hc
16p3e20R

2

Z1
0

a k;A� � a k;B� �

� 1� 2i
kR
ÿ 5

k2R2
ÿ 6i

k3R3
� 3

k4R4

� �
� exp 2ikR� � k4dk : �2:14�

This is usually expressed as the integral over imaginary
frequencies,

DE � ÿ �hc
16p3e20R

2

Z1
0

a icu;A� �a icu;B� �

� 1� 2

uR
� 5

u2R2
� 6

u3R3
� 3

u4R4

� �
� exp 2uR� �u4du ; �2:15�

which is the Casimir±Polder potential.

3 The induced-dipole method for chiral systems

3.1 Discrimination in the dispersion energy

In chiral molecules electronic transitions may be allowed
to both electric and magnetic dipole ®elds. Correspond-
ing to Eq. (2.4), we have in each molecule an induced
magnetic dipole moment,

mind
i � vij x� �bj x� � ; �3:1�

where vij is the magnetic dipole susceptibility at
frequency x and b is the magnetic ®eld. The coupling
of the induced magnetic dipole moments in molecules
A and B is not discriminatory and is not considered
further: it is a small contribution to the total dispersive
binding.

For chiral molecules, with transitions allowed to both
magnetic and electric dipole radiation, in the radiation-
molecule coupling in Eq. (1.2), there is a correction to
the electric polarizability given by the mixed electric-
magnetic polarizability,

Gij �
X

r

l0r
i mr0

j

Er0 ÿ �hx
� m0r

j lr0
i

Er0 � �hx

 !
: �3:2�

The G tensor is bilinear in the electric and magnetic
moments, and has opposite sign for a chiral molecule
and its enantiomer. It thus discriminates between them,
whereas the electric dipole polarizability and its mag-
netic analogue, being quadratic in the respective mo-
ments, are not discriminatory.

To ®nd the discrimination energy in the induced
dipole-model, namely the energy di�erence between a
right-handed molecule interacting with another right-
handed molecule, and a left-handed molecule, we ®nd
the moments induced through the tensor Eq. (3.2). These
are, for molecule A,

lind
i A� � � Gij x;A� �bj k;RA� �

mind
j A� � � eÿ10 Gij x;A� �di k;RA� � : �3:3�
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The discrimination comes in two ways. For the ®rst, we
note that the interaction of electric moments induced in
A and B, and that of magnetic moments, depends on the
retarded interaction potential (Eq. 1.6),

DEdisc1a � eÿ20 cÿ2V
Z

d3k

2p� �3 Gki k;A� �Glj k;B� �

� dk k;RA� �dl k;RB� �h iVij k;R� � �3:4�

DEdisc1b � V
Z

d3k

2p� �3 Gki k;A� �Glj k;B� �

� bk k;RA� �bl k;RB� �h iVij k;R� � : �3:5�
The magnetic ®eld correlation factor in Eq. (3.5),
analogous to Eq. (2.11) for the displacement ®eld is

0 bk k;RA� �bl k;RB� �j j0h i
� �hk

2e0cV
exp ÿik: RB ÿ RA� �� � dkl ÿ k̂k k̂l

� �
: �3:6�

Equations (3.4) and (3.5) together, after angular inte-
gration and rotational averaging, give a contribution to
the energy shift,

DEdisc1 � ÿ �h
8p3e20cR6

Z1
0

dk G k;A� �G k;B� �

� 3 sin 2kRÿ 6kR cos 2kRÿ 5k2R2 sin 2kR
ÿ

� 2k3R3 cos 2kR� k4R4 sin 2kR
�
; �3:7�

where R � RB ÿ RA, and G k� � � Gkk k� �=3.
Expressed in imaginary frequencies icu Eq. (3.7) be-

comes

DEdisc1 � �h
8p3e20cR6

Z1
0

du G iu;A� �G iu;B� �

� 3� 6uR� 5u2R2 � 2u3R3 � u4R4
ÿ �
� exp ÿ2uR� � : �3:8�

The second source of discrimination is the interaction
between the induced electric moment in one molecule
and the magnetic moment in the other. This gives terms
that depend on the potential function [5],

Uij k;R� �� 1

4pe0cR3
eijk R̂k kR cos kR� k2R2 sin kR

ÿ �
:

�3:9�
The corresponding terms in the energy shift are

DEdisc2 � eÿ10 cÿ1V
Z1
0

d3k

2p� �3 Gki k;A� �Gjl k;B� �

� dk k;RA� �bl k;RB� �h iUij k;R� � ; �3:10�
and a second with d and b interchanged in the
correlation factor. With use of the correlation factor
Eq. (3.11),

0 dk k;RA� �bl k;RB� �j j0h i � �hk
2V

eklmk̂m exp ÿik:R� � �3:11�

and the relationZ
k̂m exp ÿik:R� �dX � 4pi

cos kR
kR

ÿ sin kR
k2R2

� �
R̂m �3:12�

the contribution Eq. (3.10) after rotational averaging
becomes

DEdisc2 � ÿ �h
8p3e20cR6

Z1
0

dk G k;A� �G k;B� �

� �k2R2 sin 2kRÿ 2k3R3 cos 2kRÿ k4R4 sin 2kR� :
�3:13�

In terms of imaginary frequencies Eq. (3.13) is

DEdisc2 � ÿ �h
8p3e20cR6

Z1
0

du G iu;A� �G iu;B� �

� u2R2 � 2u3R3 � u4R4
ÿ �

exp ÿ2uR� � ;
�3:14�

so the total discriminatory interaction energy, the sum of
Eqs. (3.8) and (3.14), is

DEdisc � ÿ �h
8p3e20cR6

Z1
0

du G iu;A� �G iu;B� �

� 3� 6uR� 4u2R2
ÿ �

exp ÿ2uR� � �3:15�
or, in terms of the transition electric and magnetic
moments in Eq. (3.3),

DEdisc � ÿ 1

18p3e20�hc3R6

X
m;n

l0m A� � �mm0 A� �� �
� l0n B� � �mn0 B� �� � Z1

0

u2

k2m0 � u2
ÿ �

k2n0 � u2
ÿ �

� 3� 6uR� 4u2R2
ÿ �

exp ÿ2uR� �du : �3:16�
Equation (3.16) was earlier found by an entirely di�erent
method from conventional fourth-order perturbation
theory [14].

In the limiting (far zone) case of the intermolecular
separation greater than the reduced wavelength of a
typical molecular transition, u2 can be neglected relative
to the wave numbers k2m0 k2n0. The u integral in Eq.
(3.15) is straightforward, giving for the far-zone energy
shift,

DEdisc
far zone � ÿ

�h3c
3p3e20R9

�
X
m;n

l0m A� � � mm0 A� �� �
l0n B� � � mn0 B� �� �

E2
m0E

2
n0

:

�3:17�
In the near zone it is enough to keep the R)6 term from
Eq. (3.16), and the exponential factor can be set to unity,
giving the near-zone shift ®rst found by Mavroyannis
and Stephen [15],
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DEnear zone � ÿ 1

12p2e20c
2R6

�
X
m;n

l0m A� � � mm0 A� �� �
l0n B� � � mn0 B� �� �

Em0 � En0
:

�3:18�

4 The response method for dispersive
chiral discrimination

4.1 The driving ®eld and the response method

We discuss this method both for discrimination in
dispersive interactions and in energy transfer from an
electronically excited to a ground-state molecule. For
achiral systems the method was described by Power and
Thirunamachandran [16] and for dispersive interactions
in chiral systems by Jenkins et al. [14]. The essential
feature is that one molecule is treated as passive,
responding through its dynamic polarizability to the
Maxwell ®eld of the other (source) molecule.

The dispersive energy shift is calculated using the
quantum mechanical analogue of the classical
expression

DE � ÿ 1

2e20
a x;B� � d2 RB� � ; �4:1�

where a�x;B� is the electric dipole isotropic frequency-
dependent polarizability and d is the Maxwell displace-
ment ®eld at the molecular centre of B. It is made up of
the free ®eld and the ®eld of the source molecule A. The
total ®eld is expanded in powers of the electric dipole
moment,

d�r� � d 0� � r� � � d 1� �A r� � � d 2� �A r� � � � � � : �4:2�
The ®rst term is the free ®eld given in Eq. (2.7). The
second term is linearly dependent on the transition
moments of A, and enters as a real dipole ®eld in the
energy transfer process to be discussed later. The third
term depends on the square of the transition moments
through the electric dipole polarizability. It is given [16]
by,

d 2� �A
i r� � � i

4p

X
k

a k;A� � �hck
2e0V

� �1=2

ÿr2dij �rirj
ÿ �

� 1

r
�ei k� �a k� � exp ikr� �
ÿ �ej k� �a� k� � exp ÿikr� �� : �4:3�

The leading contribution to the dispersion energy
Eq. (4.1) is, from the d�0� � d�2� cross-term in Eq. (4.4),

DE � ÿ 1
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h i
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With use of Eqs. (2.7) and (4.1), the result after summing
over polarizations is

DE � ÿ 1

8pe0

X
k

a k;A� � a k;B� � �hck
2e0V

dij ÿ k̂ik̂j

� �
� exp�ÿikR� ÿr2dij �rirj

ÿ � exp�ikR�
R

� c:c:
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from which the Casimir±Polder potential Eq. (2.14) is
obtained.

4.2 A higher approximation and chiral discrimination

A simple extension of this method allows us to ®nd the
discriminatory part of the dispersion energy for a pair of
chiral molecules. It is necessary to go beyond electric
dipole coupling and to take account of the mixed
electric-magnetic polarizability G in Eq. (3.2). In
contrast to the electric dipole polarizability a in
Eq. (2.5) the sign of G changes according to the
handedness of the enantiomer, and it is this property
that leads to discriminatory interactions. The discrimi-
natory interaction energy, correct to second order in the
moments for a pair of chiral molecules [14], is given by

DEdisc � ÿ 1

2e0
GB d RB� � � b RB� � � b RB� � � d RB� �� � ;

�4:6�
where molecule B is passive and the d and b ®elds are
sums of the free ®elds and the source ®elds of A.

The second-order ®elds have additional contributions
dependent on G [17]. They are
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� i
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The discriminatory terms in the energy shift are those
from Eqs. (4.7) and (4.8). We have
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Now with use of the mode expansions of the free ®elds
and the second-order ®elds in Eqs. (4.7) and (4.8) we
recover the discriminatory shift given in Eq. (3.16).

5 The response method for excitation transfer

5.1 Achiral systems

Excitation transfer is the simplest of the radiation-
mediated processes between pairs of atoms or molecules.
It is of wide importance in physical processes. For
molecules close together as in crystals an initially excited
molecule transfers excitation to neighbours, and the
transfer leads to exciton phenomena in absorption and
emission. In solution there is the process ®rst explained
by FoÈ rster in which absorption by one molecular species
is followed by emission from another species at a di�erent
frequency, after excitation transfer between molecules
that can be separated by distances of up to 100 nm.
Transfer between systems at very long distances by purely
radiative interaction are also known. For achiral systems
it is a well-studied problem in molecular quantum
electrodynamics [16, 18, 19] with use of perturbation
theory, and later by the response method [20]. The latter
has the attractive feature that the causal nature of energy
transfer is transparent, since the source ®eld is causal.
Wider aspects of causality have been discussed [21].

In the case of an achiral molecule A transferring ex-
citation to an identical molecule B with an electric dipole
allowed transition 0±m the interaction potential at all
distances is given in Eq. (1.6). According to time-
dependent perturbation theory the rate of transfer of
excitation energy [19] by the Fermi rule is

C A! B� �
� q

36pe20�hR6
l0m A� ��� ��2 l0m B� ��� ��2 3� k20R2 � k40R4

ÿ �
;

�5:1�
where k0 is the wave number of the electronic transition,
and q is the density of ®nal states. Where B is identical
with A the density of states is that of the collision-
broadened pure electronic excited electronic state m. In
the case that B is a nonidentical molecule, as in the
FoÈ rster transfer, the density is that of its vibrational
manifold at the frequency ck0.

Now from the point of view of the response method
the driving ®eld is the ®rst-order displacement ®eld of
the transition in A,

0; E0 d r; t� �j jEm; 0h i

� 1

4p
l0m

j A� � ÿr2dij �rirj
ÿ � exp ikm0 r ÿ ct� �� �

r
;

�5:2�

and with the response function for molecule B,

ÿeÿ10 lm0 B� � exp�ikm0t�d A� � R; t� � �5:3�
we get the energy-transfer matrix element

M ll� � � ÿ 4pe0� �ÿ1 l0m
i A� �

� lm0
j B� � ÿr2dij �rirj

ÿ � exp�ik0R�
R

; �5:4�

from which the Fermi rate Eq. (5.1) follows.

5.2 Excitation transfer between chiral molecules

For a chiral molecule A in which the electronic
transition 0±m is allowed to both electric and magnetic
dipole radiation the displacement ®eld corresponding
to Eq. (5.2) has contributions from both transition
moments [17, 22],
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and the magnetic ®eld likewise,
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The ®elds represented by Eqs. (5.5) and (5.6) have the
same form as the classical electric and magnetic dipole
®elds radiating from oscillating current distributions of
frequency ck0 with moments l and m. The ®elds show
the familiar symmetry between the functional forms. The
electric ®eld of an oscillating electric dipole and the
magnetic ®eld of a magnetic dipole are the same in form;
the electric ®eld of an oscillating magnetic dipole and the
magnetic ®eld of an electric dipole have opposite signs.
Further the latter pair vanish for km0 � 0; the former
give the static limit expressions.

The response of B to the ®elds descriped by Eqs.
(5.5) and (5.6) is found with Eq. (5.3) for the electric
®eld, and the analogous Eq. (5.7) for the magnetic
®eld,

ÿmm0 B� � exp�ÿikm0t �b A� � R; t� � : �5:7�
The total gives the matrix element leading to the
transfer rate by the Fermi Rule. We get two contri-
butions to the rate discrimination. The electric ®eld
part of Eq. (5.5) and the magnetic part of Eq. (5.6)
together give

118



Cdisc1 � q

36pe20�hc2
R0m A� �Rm0 B� �

� ÿr2dij �rirj
ÿ � exp�ik0R�

R

���� ����2
� q

18pe20�hc2R6
R0m A� �Rm0 B� � 3� k20R2 � k40R4

ÿ �
;

�5:8�
where R0m � ÿil0m �m0m is the optical rotatory strength.

The magnetic ®eld in Eq. (5.5), and the electric ®eld
of Eq. (5.6) with the corresponding response functions
Eqs. (5.3) and (5.7) give a contribution

Cdisc2 � q

18pe20�hc2R6
R0m A� �R0m B� � k20R2 � k40R4

ÿ �
:

�5:9�
At k0R � 0 the ®elds go to zero and Eq. (5.9) likewise.

The total discriminating rate, the sum of Eqs. (5.8)
and (5.9), is

Cdisc � q

18pe20�hc2R6
R0m A� �R0m B� �

� 3� 2k20R2 � 2k40R4
ÿ �

: �5:10�
This is the rate found previously [23] by an independent
method in which A and B are coupled by the interaction
Hamiltonian (Eq. 1.2) and calculated by second-order
perturbation theory.

6 Chiral interactions by Poynting's theorem

There is a conceptually attractive approach to excitation
transfer. It is in two steps. The ®rst is to ®nd the rate of
¯ow of radiation energy emitted by the excited molecule.
The second is the calculation of the absorption of the
energy by the ground-state molecule. According to
Poynting's theorem the rate of energy ¯ow per unit
surface area of a sphere of radius r is equal to S r� � � r̂
where S�r� is the Poynting vector

S�r� � c2

4
d�r� � b�r� ÿ b�r� � d�r�� � �6:1�

and r̂ is the unit radius vector.
It is known [23] that the total net ¯ow is equal to the

emission rate times �hx found from the Einstein A coef-
®cient. In order to ®nd the discriminatory contributions
to excitation transfer we need to ®nd separately the rate
of ¯ow of left- and right-handed circularly polarized
radiation emitted by the excited molecule. For this we
need the Poynting vector separately for each of the two
circularly polarized components. This is conveniently
found with the use of chiral ®elds,

f�r� � 2ÿ1=2 eÿ10 d�r� � icb�r�� �
f ��r� � 2ÿ1=2 eÿ10 d�r� ÿ icb�r�� �

; �6:2�
so the Poynting vector Eq. (6.1) can be written

S�r� � ie0c
4

f�r� � f � r� � ÿ f � r� � � f�r�� � : �6:3�

Choosing the polarization vectors to refer to right and
left circular polarization, we have for the mode expan-
sions of the ®elds in Eq. (6.2),
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: �6:4�

f annihilates left-handed photons and creates right-
handed photons. f � has the opposite property.

The calculation of the Poynting vector for an emitting
dipole depends on the displacement and magnetic ®elds
up to terms quadratic in the dipole moment sources. The
terms in second-order ®elds are precisely equal to those
from ®rst-order ®elds, so we need only ®nd the latter and
double the result.

In terms of linear combinations of transition mo-
ments

f � 2ÿ1=2 l� i
c
m

� �
; f� � 2ÿ1=2 lÿ i

c
m

� �
�6:5�

we construct the chiral ®elds from the ®rst-order ®elds
Eqs. (6.6) and (6.7) for the 0±m transition,
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To get the Poynting vector for left circularly polarized
light we use Eqs. (6.6) and (6.7) in Eq. (6.3). Since f
annihilates and f � creates the left-polarized part of
the ®eld we need only the ®rst term of Eq. (6.3). The
expectation value for the state |Em,0i, referring to
the molecular state |Emi and the vacuum ®eld state |0i,
is given in Eq. (6.8),
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eijkifm0
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r

)
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where q � rÿ R. After evaluation and random averag-
ing there are terms in q)2, q)4 and q6. The latter two
appear only in oscillatory charge movements across the
bounding spherical surface, and make no contribution to
the net ¯ow. Extracting the inverse square terms we ®nd
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the Poynting vector S�L��r� for net left-handed ¯ow.
A similar calculation gives S�R��r�. For the net rate of
energy ¯ux per unit area of a sphere of radius R the
result is

r̂ � S�L=R� r� � � ck4m0

48p2e0R2
l0m � i

c
m0m

���� ����2 ; �6:9�

with the upper and lower signs for left- and right-
polarized emission. There is an identical contribution
from the cross term between zero- and second-order
®elds, so that the total is twice Eq. (6.9). Treating this
energy ¯ux from the emission of the excited molecule as
incident radiation it is straightforward to calculate the
absorption rate by molecule B. We have

Cabs � qk4m0

72pe20�hR2
l0m A� � � i

c
m0m A� �

���� ����2
� l0m B� � � i

c
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���� ����2 ; �6:10�

where q is the density of states introduced earlier.
The discrimination in the transfer rate is found by

summing the electric-magnetic terms in Eq. (6.10) for
left- and right-handed circularly polarized photons. The
result is the same as found in the response method, given
in Eq. (5.10).

7 Conclusion

Molecular quantum electrodynamics provides a concep-
tually attractive framework for a deep understanding of
intermolecular interactions. The essential feature of the
theory is the quantization of the eletromagnetic ®eld.
Intermolecular interactions are viewed as arising from
exchange of photons between molecules. In this paper
we have described two approaches based on quantum
electrodynamics which carry simple physical pictures.
The induced moment viewpoint is that the vacuum ®eld
induces moments in the two molecules, the induced
moments interacting with each other via retarded
potentials. These potentials are known from earlier
calculations for moments coupled through the quantized
radiation ®eld.

The Casimir approach to intermolecular forces and
its description as related to ¯uctuations in the vacuum
radiation ®eld has in both cases the merit of a simple
physical picture. In the extension of the second method
to chiral systems there is the same objective. At ®rst sight
it may appear that the calculation is simpler than by
conventional diagrammatic perturbation theory, but this
is partly because the retarded interaction potentials Eqs.
(1.6) and (3.9) for electric-electric and electric-magnetic
dipole moments are already known. Although these are
of the same form as the classical expressions for mac-
roscopic systems they have to be found ab initio for

atom or molecule moments coupled through the quan-
tized radiation ®eld, usually by perturbation theory. In
Casimir's early work the classical electric dipole coupling
potential was taken to apply to microscopic systems.

For chiral systems, ¯uctuations in the electromag-
netic ®eld induce virtual electric and magnetic dipole
moments in molecules. The discrimination in the pair-
wise coupling between dextro-dextro and dextro-laevo
appears as the interference between the contributions by
electric-electric and magnetic-magnetic terms, and in the
electric-magnetic term. Discrimination at short distances
is from the former and shows an inverse sixth-power
dependence on the separation. At longer distances the
discrimination is from both and shows an inverse ninth-
power dependence.

The application of the response method to energy
transfer between chiral molecules depends on the idea
that energy passes via the radiation ®eld in left- and
right-circularly polarized photons, and that the dextro-
dextro, dextro-laevo, discrimination in the transfer rate
depends on the di�erent rates of absorption by the ac-
ceptor of the two circular polarizations, as in circular
dichroism. The broader consideration of energy ¯ow
from spontaneous emission by a chiral molecule is dis-
cussed for the ®rst time through the quantum electro-
dynamical form of the Poynting vector and the transfer
rate calculated.
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